BDS-2023-19-60

HENIKWON Technical Brochure

Leading to better

Power distribution SCM BUSDUCT SYSTEM

Values of HENIKWON

INNOVATION CHALLENGE TEAM WORK CUSTOMER FIRST

SPEED UP

SIMPLE & CONVENIENCE VISIBLE MANAGEMENT PRESENT POSITION

Contents en 15

1. ABOUT HENIKWON	2
2. SCM BUSDUCT SYSTEM – LOW VOLTAGE General Specification Electrical Characteristics Product Selection Design Factors For Busduct Layout Installation Manual	6 8 12 24 27
3. HIGHBAR BUSDUCT SYSTEM – HIGH VOLTAGE General Specification Product Selection	31 32
4. AIRBAR BUSDUCT SYSTEM General Specification Product Selection Installation Manual	34 35 38
5. FIRE-RESISTANT BUSDUCT SYSTEM	39
6. IP STANDARDS	40

TOGETHER TODAY WE ARE GOING TO MAKE SUCCESSFUL HISTORY

WE HAVE THE POWER

Established since 1987, Henikwon Corporation a progressive market leader in the electrical equipment industry. Henikwon has been playing a pioneering role in the busduct landscape. We produce high performance and quality products with excellent services to the customers throughout the life cycle. We constantly strive to maintain a high level of quality and compliance to the international product standards.

We constantly achieve a high level of quality in compliance to the international standards in products.

When you choose Henikwon Busduct system, we know you are partnering with a reliable supplier of Busduct system ideally configured for your application.

Whether you require Busduct system for reliable quality, prime or standby application, we can meet your needs with our range of quality products developed by highly skilled engineers and technicians coupled with excellent services provided by our reliable team.

To meet all your requirements for low, medium and high voltage Busduct systems, we rely on our expertise in power distribution, ranging from 400A to 6300A.

Our cycle of success thrives on our commitment, innovations, challenge, teamwork and "Customer First" motto.

This is what makes us and gives us an edge with a deep understanding of the market and an appreciation of our customers most critical needs. Worry no further, we're here to find the best solutions to make your life a better one!

HENIKWON is positioning itself as a global manufacturing leader in the busduct system industry by setting a precedent for product quality and good services. It has embarked on to establish and maintain a strong interface between the organization and its customers as a partnership. This will provide accurate feedback on all customer service issues and identify business solutions to continually improve service performance and responsiveness. A World Leader in the Busduct System through Innovation

HENIKWON's customer driven R&D develops tailor made solutions for specific market needs, making us the partner of choice and the leading busduct system manufacturer. With a resolution in energy where it gives the rapid widespread deployment of advanced, clean, and sustainable energy sources, we will try to be the integral part of the solution to the industrial needs.

The Future Energy Henikwon

Quality, Reliability, Precision

Quality, reliability and precision are the hallmarks of our Henikwon philosophy. They represent concepts and values to which we are totally committed. In Henikwon, quality means that all our employees take personal responsibility for the company as a whole and in particular, for their own field of work. This individual commitment to perfection results in product superiority, which our products are ideally tailored to our customer's needs and fulfill market requirements. We ensure a high level of customer satisfaction. We familiarize ourselves with their needs, requirements and products as well as learnt from past experiences of dealing with our customer in order to render our best services to them.

Quality Is Our Philosophy

Responsibility and imaginations are part of our quality, which make our products reliable and our customer satisfied. Our employees are 100% committed to deliver defect-free products and excellent service through continuous improvements.

Our latest high-tech manufacturing process improves quality and productivity. Automation in our manufacturing workshops has led to a significant advancement in efficiency, productivity and quality.

All products undergo functional and power testing before dispatch. These make our smooth flow of organization operation possible in complying with ISO9001: 2015, OHSAS18001:2007, MS 1722 : 2005, and ISO14001: 2015.

Henikwon Busduct System is fully type tested through various international independent laboratories in world wide, proving its best quality product compliances to the international standards;

- IEC 61439 1 & 6: 2012
- IEC 60439 1 & 2: 2005
- IEC 62271 200: 2003
- IEC 60529-2: 2001
- IEC 60331
- BSEN 60439 1 & 2: 2000
- ASNZ 3439 2: 2002
- AS 3439 2 1994
- AS 60529 2004
- VDE 532
- JISC 8364
- CCC

Endless R & D investments and International recognitions through tests

GENERAL SPECIFICATION

Superior Compact & Sandwich Type Design

Henikwon SCM Busduct System is light weight, low impedance, non-ventilated, naturally cooled and totally enclosed for protection against mechanical damages and dust accumulation in compact and sandwich type.

Our design does not require fire stop or internal barriers in each busduct length/unit due to its compact & sandwich type construction.

Moreover, galvanized steel housing or aluminum housing with epoxy compound powder coated by an automated electrostatic process enables fire resistance. The housings are capable of integral ground.

Busbar

99.9% copper busbar is tin coated with epoxy compound insulation. This is to prevent from water and moisture that can cause reduction in dielectric resistance, and its flame retardant ensures the safety. Likewise, aluminum busbar is silver/tin coated at the joint parts for better conductivity.

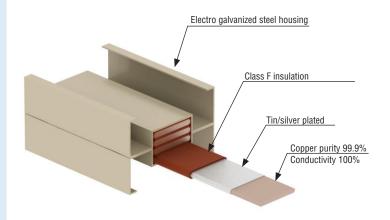
Joints

To check for tightness without de-energizing the busduct system, the joints are of maintenance-free system with High tensile bolt. The high strength bolt is insulated by a high quality insulation material for heat and impact forces.

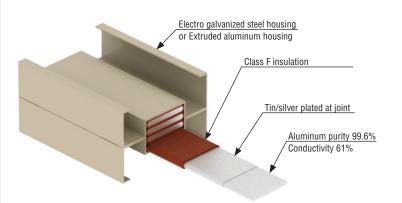
For uniformed distribution of the clamping force over the joints, all bolted connections are equipped with plate spring.

The joint design permits safe practical testing of joints for tightness without de-energizing the busduct and it is possible to remove any one section in a run without disturbing the two adjacent busduct sections.

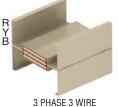
The joints have an adjustability for a precise alignment and to facilitate an easy field installation. The maintenance-free nut is provided where the outer head will be twisted off once it reaches 150N•m which will act as lock nut.


Earth System

The busduct housing is constructed to have positive electric continuity throughout thehousing surface. It is available with internal or integral ground with 50% earth, 25%+25% earth or 100% earth options. 200% neutral conductor is also available


Additional external earth tape can be fixed to the outer part of the housing as per requirement. However, it is contractor's scope of supply.

Plug-in Hole


A maximum of five plug-in holes can be designed within a 3000mm standard feeder unit on both sides. The pitch the plug-in hole have 500mm intervals. Plug-in hole is well designed to prevent improper installation of plug-in box.

Copper Busduct System

Aluminum Busduct System

3 PHASE 3 WIRE WITH INTEGRAL GROUND

3 PHASE 4 WIRE WITH INTEGRAL GROUND AND 100% NEUTRAL

3 PHASE 5 WIRE WITH INTEGRAL GROUND AND 200% NEUTRAL

3 PHASE 3 WIRE WITH INTERNAL GROUND

3 PHASE 4 WIRE WITH INTERNAL GROUND AND 100% NEUTRAL

3 PHASE 5 WIRE WITH INTERNAL GROUND AND 200% NEUTRAL

3 PHASE 4 WIRE WITH 25% + 25% INTERNAL GROUND AND 100% NEUTRAL

Plug-in Box Safety Devices

Plug-in box is mechanically interlocked with the busduct housing to prevent installation or removal of plug-in box while the switch is in 'ON' position. It is equipped with an operating handle which will always remain in control of the switching mechanism.

Before the jaws make contact with the busbar, the plug-in box enclosure shall make positive ground connection to the busduct housing.

The plug-in box is also equipped with internal insulation barriers to prevent accidental contact of housing plate and conductors. To prevent the plug-in box cover from being opened while the switch is in 'ON' position, the covers of all plug-in boxes shall have 'releasable' type of interlocks. The plugs shall be provided with means of padlocking the switch in the 'OFF' position. With live parts which are on the sideline of the protective device during time of wire pulling.

Expansion Joints

Expansion joint shall be installed when necessary and it shall be capable of taking up all thermal expansions, assuming in full-load condition.

Support of Busduct

Supporting interval for horizontal run shall not exceed 1.5 meters. Vertical riser of busduct shall be supported adequately with spring hangers at each floor. Immediate supports shall be provided if the floor to floor distance exceeds 4 meters.

Ambient Temperature

Due to liberal cross section area of the conductors and superior housing design, Henikwon SCM Busduct Systems can be loaded at rated current at an ambient temperature of 50°C without derating (IEC standard requirement is 35°C).

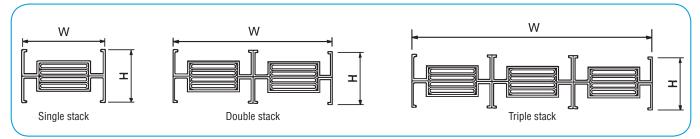
Short-time Current Capacity

The short-time current capacity of the busduct shall not be less than the value given as per the table on page 9.

Impedance Value

The impedance of the busduct shall not exceed the value given as per the table on page 10.

EMC Compatible


Henikwon SCM busduct system is tested EMC compatible.

Application Data

- 1) Operating Voltage: 1,000 Volts
- 2) Withstand Voltage: 8,000 Volts
- 3) Insulation Type: Class F insulation
- 4) System Configuration:
- 3ø3W, 3ø3W+G, 3ø4W, 3ø4W+G, 3ø5W,3ø5W+G 5) Degree of Protection: Indoor – IP54
 - Outdoor IP55, IP65, IP67
- 6) Fire Resistant Busduct comply to IEC 60331
- 7) Seismic Zone-4 compliant to IBC 2003, IEEE 693-1997 ASCE 7-02, GR-63-Core
- 8) Complies to IK-10

ELECTRICAL CHARACTERISTICS

1. DIMENSIONS

Copper Conductor

	Dimension (mm)									Weight (kg/m)				
	Height													
Ampere	Conductor	Width	Indo	oor Buse	luct	Outo	loor Bus	duct	Indo	or Busd	uct	Outo	door Bu	sduct
(A)			3W	4W	5W	3W	4W	5W	3W	4W	5W	3W	4W	5W
400	4x40-1	115	100	120	140	190	210	230	10.8	13.3	15.9	14.2	16.7	19.2
630	6x40-1	115	100	120	140	190	210	230	14.4	18.1	21.5	18.6	22.0	25.5
800	6x50-1	125	100	120	140	190	210	230	17.2	21.5	25.8	21.1	25.4	29.7
1000	6x65-1	140	100	120	140	190	210	230	22.5	28.2	34.0	26.5	32.3	38.0
1250	6x90-1	165	100	120	140	190	210	230	22.3	28.2	34.1	25.8	31.6	37.5
1600	6x125-1	200	100	120	140	190	210	230	29.4	37.4	45.2	33.4	41.2	49.0
2000	6x150-1	225	100	120	140	190	210	230	34.7	44.0	53.2	39.3	48.5	57.0
2500	6x200-1	275	100	120	140	190	210	230	43.6	55.3	67.2	47.4	59.2	71.1
3200	6x125-2	400	100	120	140	190	210	230	57.6	72.9	88.3	61.4	76.7	92.0
3600	6x150-2	450	100	120	140	190	210	230	68.1	86.5	104.7	72.0	90.3	108.7
4000	6x175-2	500	100	120	140	190	210	230	79.0	100.3	121.6	83.3	104.5	125.8
4500	6x185-2	520	100	120	140	190	210	230	81.3	103.4	125.6	85.1	107.3	129.4
5000	6x200-2	550	100	120	140	190	210	230	87.2	110.6	134.4	94.8	118.4	142.2
6300	6x175-3	750	100	120	140	190	210	230	118.5	150.4	182.4	122.8	154.7	186.6

Aluminum Conductor

	Dimension (mm)								Weight (kg/m)					
					Heig	ght								
	Conductor	Width	Indo	oor Busd	luct	Outd	oor Bus	duct	Indo	or Busd	uct	Outo	door Bu	sduct
(A)			3W	4W	5W	3W	4W	5W	ЗW	4W	5W	3W	4W	5W
400	5x55-1	130	100	120	140	190	210	230	8.0	9.6	11.1	12.6	14.2	15.7
630	6x55-1	130	100	120	140	190	210	230	9.6	11.4	13.1	14.3	16.0	17.7
800	6x75-1	150	100	120	140	190	210	230	11.2	13.2	15.3	15.8	17.8	19.9
1000	6x100-1	175	100	120	140	190	210	230	13.1	15.6	18.1	17.7	20.2	22.7
1250	6x125-1	200	100	120	140	190	210	230	15.1	18.0	20.9	19.7	22.6	25.5
1600	6x175-1	250	100	120	140	190	210	230	19.0	22.7	26.5	23.6	27.3	31.1
2000	6x220-1	295	100	120	140	190	210	230	22.5	27.0	31.5	24.8	29.3	33.8
2500	6x150-2	450	100	120	140	190	210	230	34.0	40.7	47.3	38.6	45.3	51.9
3200	6x175-2	500	100	120	140	190	210	230	38.0	45.4	53.0	47.2	54.6	62.2
4000	6x220-2	590	100	120	140	190	210	230	45.0	54.0	63.0	49.6	58.6	67.6
4500	6x185-3	780	100	120	140	190	210	230	59.2	71.0	82.7	63.8	75.6	87.4
5000	6x240-3	945	100	120	140	190	210	230	72.0	86.6	101.2	76.6	91.2	105.8

G HENIKWON

Outdoor Type Busduct

Full protection of IP65-67 busduct system is in special joint cover system to provide protection from water and dust.

GD HENIKWON

C

Protection rating design will be based on the site condition.

2. HIGH SHORT CIRCUIT CAPACITY

The allowable short time current capacity of the standard SCM Busduct System is shown in the table below.

Determining Conductor Size

Maximum permissible current carrying capacity and short circuit current are the aspects needed in selecting a conductor size. Short circuit current capacity can be determined by operating temperature, short circuit temperature and short circuit duration.

Ampere	Short Circuit
(A)	(kA/1sec)
400	25
630	40
800	50
1000	50
1250	65
1600	65
2000	80
2500	100
3200	100
3600	100
4000	100
4500	100
5000	100
6300	100

* Value for 3 sec available on request

3. IMPEDANCE

Copper Conductor

Copper	r Conduct	tor					(Unit: 10⁻₅Ω/m)	
Ampere Conductor				50Hz			60Hz	
(A)	(mm)	RDC	RAC	X	Z	RAC	Х	Z
400	4x40-1	14.66	14.73	4.08	15.28	14.94	4.08	15.48
630	6x40-1	9.77	10.00	3.93	10.74	10.10	3.93	10.84
800	6x50-1	7.82	8.20	3.35	8.86	8.39	3.35	9.03
1000	6x65-1	6.01	6.52	2.77	7.09	6.70	2.77	7.25
1250	6x90-1	4.34	4.95	2.19	5.41	5.12	2.19	5.56
1600	6x125-1	3.13	3.79	1.74	4.17	3.94	1.74	4.31
2000	6x150-1	2.61	3.29	1.54	3.63	3.44	1.54	3.77
2500	6x200-1	1.95	2.41	1.29	2.73	2.53	1.29	2.83
3200	6x125-2	1.56	1.90	0.44	1.94	1.97	0.44	2.02
3600	6x150-2	1.30	1.64	0.39	1.69	1.72	0.39	1.76
4000	6x175-2	1.12	1.34	0.35	1.38	1.39	0.35	1.44
4500	6x185-2	1.06	1.28	0.34	1.32	1.34	0.34	1.38
5000	6x200-2	0.98	1.20	0.32	1.25	1.26	0.32	1.30
6300	6x175-3	0.74	0.88	0.23	0.91	0.92	0.23	0.95

Aluminum Conductor

(Unit: 10⁻⁵Ω/m) 50Hz 60Hz Ampere Conductor RDC (A) (mm) RAC Χ Ζ RAC Х Ζ 400 5x55-1 13.45 13.45 3.17 13.82 13.65 3.17 14.02 630 6x55-1 11.21 11.42 3.12 11.84 11.53 3.12 11.94 800 6x75-1 8.22 8.66 2.49 9.02 8.76 2.49 9.11 1000 6x100-1 6.17 6.75 2.03 7.05 6.84 2.03 7.14 1250 6x125-1 4.93 5.59 1.74 5.85 5.68 1.74 5.94 1600 6x175-1 3.52 3.93 1.40 4.17 4.01 1.40 4.25 2000 6x220-1 2.80 3.25 1.21 3.47 3.32 1.21 3.54 2500 2.06 2.25 0.77 2.38 2.29 0.77 6x150-2 2.42 3200 6x175-2 1.76 1.94 0.70 2.07 1.98 0.70 2.10 4000 6x220-2 1.40 1.58 0.61 1.70 1.62 0.61 1.73 4500 6x185-3 1.10 1.23 0.45 1.31 1.26 0.45 1.33 5000 0.85 0.99 0.38 1.06 1.02 0.38 1.09 6x240-3

4. VOLTAGE DROP

Voltage Drop: Line to Line in Copper Conductor

U													
Ampere	Conductor		3Ø 50Hz Power Factor					3Ø 60Hz Power Factor					
(A)	(mm)	1.00	0.90	0.85	0.80	0.70	0.60	1.00	0.90	0.85	0.80	0.70	0.60
400	4x40-1	10.20	10.41	10.16	9.86	9.16	8.38	10.35	10.55	10.28	9.97	9.26	8.47
630	6x40-1	10.91	11.69	11.53	11.30	10.70	9.98	11.03	11.79	11.63	11.39	10.78	10.05
800	6x50-1	11.36	12.25	12.10	11.87	11.27	10.53	11.62	12.48	12.32	12.08	11.45	10.69
1000	6x65-1	11.30	12.26	12.13	11.91	11.33	10.61	11.60	12.53	12.39	12.16	11.54	10.80
1250	6x90-1	10.72	11.71	11.61	11.42	10.89	10.22	11.07	12.03	11.91	11.70	11.14	10.43
1600	6x125-1	10.50	11.56	11.47	11.30	10.80	10.16	10.93	11.94	11.83	11.64	11.10	10.42
2000	6x150-1	11.38	12.57	12.49	12.31	11.78	11.10	11.90	13.04	12.93	12.72	12.14	11.41
2500	6x200-1	10.43	11.81	11.80	11.68	11.28	10.71	10.94	12.27	12.23	12.09	11.63	11.02
3200	6x125-2	10.50	10.51	10.20	9.85	9.08	8.23	10.93	10.89	10.56	10.19	9.37	8.49
3600	6x150-2	10.25	10.27	9.98	9.64	8.89	8.07	10.71	10.69	10.37	10.01	9.21	8.35
4000	6x175-2	9.25	9.38	9.14	8.85	8.20	7.49	9.65	9.74	9.48	9.17	8.48	7.72
4500	6x185-2	9.97	10.11	9.86	9.55	8.85	8.08	10.42	10.52	10.24	9.91	9.17	8.35
5000	6x200-2	10.43	10.60	10.33	10.01	9.29	8.48	10.94	11.06	10.77	10.42	9.65	8.79
6300	6x175-3	9.62	9.75	9.50	9.20	8.53	7.78	10.03	10.12	9.85	9.53	8.82	8.03

Voltage Drop: Line to Line in Aluminum Conductor

(Unit : Volt/100m)

(Unit : Volt/100m)

	-												
Ampere	Conductor		3Ø 50Hz Power Factor					3Ø 60Hz Power Factor					
(A)	(mm)	1.00	0.90	0.85	0.80	0.70	0.60	1.00	0.90	0.85	0.80	0.70	0.60
400	5x55-1	9.32	9.34	9.08	8.77	8.09	7.35	9.46	9.47	9.20	8.88	8.19	7.43
630	6x55-1	12.46	12.70	12.39	12.01	11.16	10.20	12.58	12.81	12.49	12.11	11.24	10.27
800	6x75-1	12.00	12.31	12.02	11.68	10.87	9.97	12.14	12.44	12.14	11.79	10.97	10.05
1000	6x100-1	11.69	12.05	11.79	11.46	10.69	9.83	11.85	12.20	11.93	11.59	10.81	9.93
1250	6x125-1	12.10	12.53	12.27	11.94	11.16	10.27	12.29	12.70	12.43	12.09	11.29	10.39
1600	6x175-1	10.89	11.49	11.30	11.03	10.39	9.63	11.11	11.69	11.48	11.21	10.54	9.76
2000	6x220-1	11.24	11.95	11.77	11.52	10.87	10.11	11.51	12.19	12.00	11.73	11.06	10.27
2500	6x150-2	9.75	10.23	10.05	9.81	9.21	8.52	9.93	10.39	10.20	9.95	9.33	8.63
3200	6x175-2	10.78	11.39	11.20	10.94	10.31	9.56	10.99	11.58	11.38	11.12	10.46	9.69
4000	6x220-2	10.98	11.72	11.55	11.31	10.69	9.95	11.24	11.95	11.77	11.51	10.87	10.11
4500	6x185-3	9.61	10.16	9.99	9.77	9.20	8.54	9.81	10.34	10.16	9.93	9.34	8.66
5000	6x240-3	8.59	9.17	9.04	8.86	8.37	7.80	8.81	9.37	9.22	9.03	8.52	7.93

Voltage Drop Calculation Formulas

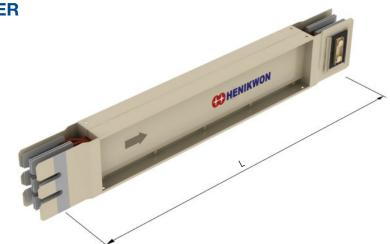
 $\Delta V = \sqrt{3} \bullet I (Rcos \phi + Xsin \phi) \bullet K$

where ΔV : Line-to-line voltage drop

I : Load Current cosø: Load power factor

 $\sin \phi = \sqrt{1 - \cos^2 \phi}$

- R: AC resistance at load current (Ω/m) K: Load Distribution Factor, calculated as follow:

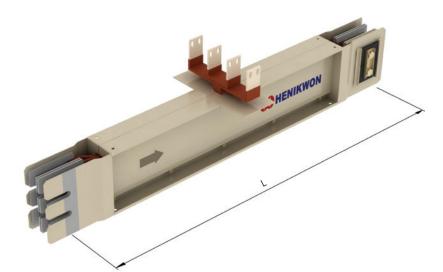

 - to calculate the voltage drop at the end of a BT run, K = 1 if the load is concentrated at the end of the BT run
 - K = (n+1)/2n if the load is uniformly spread between n branches.
 - to calculate the voltage drop at the origin of a branch situated at a distance d from the origin of the BT run,
 - $K = \frac{(2n + 1 n(d/l))}{(2n + 1 n(d/l))}$ for loads spread uniformly along the BT run. 2n

 ${\rm R}_{_{\rm AC}}$: AC resistance at rated current (I_,) (\Omega/m) (Shown in the above table)

Note: It is not applicable to single phase & DC busduct.

PRODUCT SELECTION

- Standard length (L): 3000mm.
- Min. length (L): 500mm.


- Standard length (L): 3000mm.
- Plug-in holes can be provided on both side of the busduct.
- The hole position are determined by the space between the plug-in boxes and the length between the boxes and joint points.
- A branch exceeding 400A belongs to tap-off box type. Standard dimensions of Plug-in Busduct (Copper /Aluminum) are as follow:

Conductor	L1 (mm)	L2 (mm)	Hole to Hole (mm)	Hole Qty
Copper/Aluminum	1500	1500	575	1

PLUG-IN FEEDER

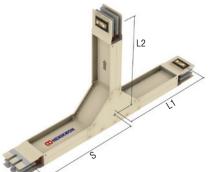
TAP-OFF FEEDER

- Standard length (L): 3000mm.
- Min. length (L): 1200mm.
- Max. number of tap-off: 3 tap-offs in 3000mm.
- A branch of 400A & above belongs to a tap-off type.

HORIZONTAL ELBOW

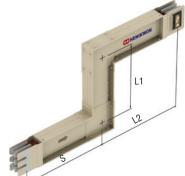
Ampere (A)	Standard (mm) S x L	Minimum (mm) S x L
400	500 x 500	325 x 325
630	500 x 500	330 x 330
800	500 x 500	330 x 330
1000	500 x 500	340 x 340
1250	500 x 500	353 x 353
1600	500 x 500	378 x 378
2000	500 x 500	395 x 395
2500	500 x 500	423 x 423
3200	500 x 500	490 x 490
3600	700 x 700	515 x 515
4000	700 x 700	525 x 525
4500	700 x 700	580 x 580
5000	700 x 700	580 x 580
6300	700 x 700	670 x 670

VERTICAL TEE ELBOW



Ampere (A)	Standard (mm) S x L1 x L2	Minimum (mm) S x L1 x L2
400	500 x 500 x 500	293 x 293 x 293
630	500 x 500 x 500	300 x 300 x 300
800	500 x 500 x 500	300 x 300 x 300
1000	500 x 500 x 500	310 x 310 x 310
1250	500 x 500 x 500	323 x 323 x 323
1600	500 x 500 x 500	348 x 348 x 348
2000	500 x 500 x 500	365 x 365 x 365
2500	500 x 500 x 500	393 x 393 x 393
3200	500 x 500 x 500	460 x 460 x 460
3600	750 x 750 x 750	485 x 485 x 485
4000	750 x 750 x 750	530 x 530 x 530
4500	750 x 750 x 750	530 x 530 x 530
5000	750 x 750 x 750	550 x 550 x 550
6300	750 x 750 x 750	670 x 670 x 670

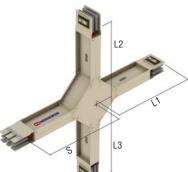
* Data for Copper only. Data for aluminum available on request.


Ampere (A)	Standard (mm) S x L	Minimum (mm) S x L
400	500 x 500	300 x 300
630	500 x 500	300 x 300
800	500 x 500	300 x 300
1000	500 x 500	300 x 300
1250	500 x 500	300 x 300
1600	500 x 500	300 x 300
2000	500 x 500	300 x 300
2500	500 x 500	300 x 300
3200	500 x 500	300 x 300
3600	500 x 500	300 x 300
4000	500 x 500	300 x 300
4500	500 x 500	300 x 300
5000	500 x 500	300 x 300
6300	500 x 500	300 x 300

HORIZONTAL TEE ELBOW

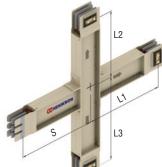
	5761 NGM	
Ampere	Standard (mm)	Minimum (mm)
(A)	S x L1 x L2	S x L1 x L2
400	500 x 500 x 500	350 x 350 x 350
630	500 x 500 x 500	360 x 360 x 360
800	500 x 500 x 500	360 x 360 x 360
1000	500 x 500 x 500	380 x 380 x 380
1250	500 x 500 x 500	400 x 400 x 400
1600	600 x 600 x 600	460 x 460 x 460
2000	600 x 600 x 600	500 x 500 x 500
2500	600 x 600 x 600	560 x 560 x 560
3200	600 x 600 x 600	460 x 460 x 460
3600	500 x 500 x 500	300 x 210 x 300
4000	600 x 600 x 600	500 x 500 x 500
4500	500 x 500 x 500	300 x 210 x 300
5000	600 x 600 x 600	560 x 560 x 560
6300	600 x 600 x 600	500 x 500 x 500

VERTICAL OFFSET ELBOW



0	5	
Ampere	Standard (mm)	Minimum (mm)
(A)	S x L1 x L2	S x L1 x L2
400	500 x 500 x 500	323 x 260 x 323
630	500 x 500 x 500	330 x 275 x 330
800	500 x 500 x 500	330 x 275 x 330
1000	500 x 500 x 500	340 x 295 x 340
1250	500 x 500 x 500	353 x 320 x 353
1600	500 x 500 x 500	378 x 370 x 378
2000	500 x 500 x 500	395 x 405 x 395
2500	500 x 500 x 500	423 x 460 x 423
3200	500 x 500 x 500	490 x 370 x 490
3600	750 x 750 x 750	515 x 395 x 515
4000	750 x 750 x 750	525 x 405 x 525

Ampere (A)	Standard (mm) S x L1 x L2	Minimum (mm) S x L1 x L2
400	500 x 500 x 500	300 x 210 x 300
630	500 x 500 x 500	300 x 210 x 300
800	500 x 500 x 500	300 x 210 x 300
1000	500 x 500 x 500	300 x 210 x 300
1250	500 x 500 x 500	300 x 210 x 300
1600	500 x 500 x 500	300 x 210 x 300
2000	500 x 500 x 500	300 x 210 x 300
2500	500 x 500 x 500	300 x 210 x 300
3200	500 x 500 x 500	300 x 210 x 300
3600	500 x 500 x 500	300 x 210 x 300
4000	500 x 500 x 500	300 x 210 x 300
4500	500 x 500 x 500	300 x 210 x 300
5000	500 x 500 x 500	300 x 210 x 300
6300	500 x 500 x 500	300 x 210 x 300


12

HORIZONTAL CROSS ELBOW

Ampere (A)	Standard (mm) S x L1 x L2 x L3	Minimum (mm) S x L1 x L2 x L3
400	500 x 500 x 500 x 500	420 x 420 x 420 x 420
630	500 x 500 x 500 x 500	450 x 450 x 450 x 450
800	500 x 500 x 500 x 500	450 x 450 x 450 x 450
1000	600 x 600 x 600 x 600	490 x 490 x 490 x 490
1250	600 x 600 x 600 x 600	540 x 540 x 540 x 540
1600	800 x 800 x 800 x 800	630 x 630 x 630 x 630
2000	800 x 800 x 800 x 800	700 x 700 x 700 x 700
2500	800 x 800 x 800 x 800	800 x 800 x 800 x 800
3200	800 x 800 x 800 x 800	630 x 630 x 630 x 630
3600	600 x 600 x 600 x 600	495 x 495 x 495 x 495
4000	800 x 800 x 800 x 800	700 x 700 x 700 x 700
4500	600 x 600 x 600 x 600	530 x 530 x 530 x 530
5000	800 x 800 x 800 x 800	800 x 800 x 800 x 800
6300	800 x 800 x 800 x 800	700 x 700 x 700 x 700

VERTICAL CROSS ELBOW

750 x 750 x 750

750 x 750 x 750

750 x 750 x 750

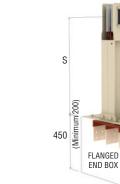
560 x 440 x 560

580 x 460 x 580

670 x 450 x 670

Ampere	Standard (mm)	Minimum (mm)
(A)	S x L1 x L2 x L3	S x L1 x L2 x L3
400	500 x 500 x 500 x 500	293 x 293 x 293 x 293
630	500 x 500 x 500 x 500	300 x 300 x 300 x 300
800	500 x 500 x 500 x 500	300 x 300 x 300 x 300
1000	500 x 500 x 500 x 500	310 x 310 x 310 x 310
1250	500 x 500 x 500 x 500	323 x 323 x 323 x 323
1600	500 x 500 x 500 x 500	348 x 348 x 348 x 348
2000	500 x 500 x 500 x 500	365 x 365 x 365 x 365
2500	500 x 500 x 500 x 500	393 x 393 x 393 x 393
3200	500 x 500 x 500 x 500	460 x 460 x 460 x 460
3600	750 x 750 x 750 x 750	485 x 485 x 485 x 485
4000	750 x 750 x 750 x 750	530 x 530 x 530 x 530
4500	750 x 750 x 750 x 750	530 x 530 x 530 x 530
5000	750 x 750 x 750 x 750	550 x 550 x 550 x 550
6300	750 x 750 x 750 x 750	670 x 670 x 670 x 670

* Data for Copper only. Data for aluminum available on request.

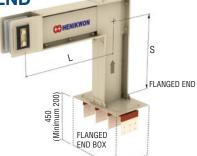

4500

5000

6300

HORIZONTAL OFFSET ELBOW

FEEDER WITH FLANGED END

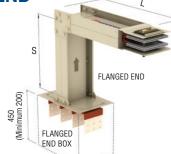


L1 L2 S

COMBINATION ELBOW

Ampere (A)	Standard (mm) S x L1 x L2	Minimum (mm) S x L1 x L2
400	500 x 500 x 500	300 x 233 x 323
630	500 x 500 x 500	300 x 240 x 330
800	500 x 500 x 500	300 x 240 x 330
1000	500 x 500 x 500	300 x 250 x 340
1250	500 x 500 x 500	300 x 263 x 353
1600	500 x 500 x 500	300 x 288 x 378
2000	500 x 500 x 500	300 x 305 x 395
2500	500 x 500 x 500	300 x 333 x 423
3200	500 x 500 x 500	300 x 400 x 490
3600	700 x 700 x 700	300 x 425 x 515
4000	700 x 700 x 700	300 x 435 x 525
4500	700 x 700 x 700	300 x 470 x 560
5000	700 x 700 x 700	300 x 490 x 580
6300	700 x 700 x 700	300 x 580 x 670

VERTICAL ELBOW WITH FLANGED END

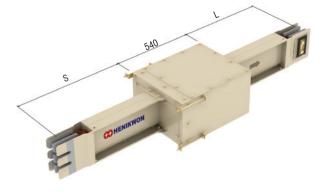


Ampere (A)	Standard (mm) S x L	Minimum (mm) S x L
400	500 x 500	178 x 323
630	500 x 500	185 x 330
800	500 x 500	185 x330
1000	500 x 500	195 x 340
1250	500 x 500	208 x 353
1600	500 x 500	233 x 378
2000	500 x 500	278 x 395
2500	500 x 500	320 x 423
3200	500 x 500	345 x 490
3600	700 x 700	370 x 515
4000	700 x 700	378 x 525
4500	700 x 700	415 x 560
5000	700 x 700	435 x 580
6300	700 x 700	520 x 670

* Data for Copper only. Data for aluminum available on request.

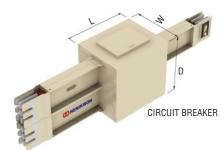
Ampere (A)	Standard (mm) S	Minimum (mm) S
	-	
400	500	250
630	500	250
800	500	250
1000	500	250
1250	500	250
1600	500	250
2000	500	250
2500	500	250
3200	500	250
3600	500	250
4000	500	250
4500	500	250
5000	500	250
6300	500	250

HORIZONTAL ELBOW WITH FLANGED END



Ampere (A)	Standard (mm) S x L	Minimum (mm) S x L
400	500 x 500	180 x 300
630	500 x 500	180 x 300
800	500 x 500	180 x 300
1000	500 x 500	180 x 300
1250	500 x 500	180 x 300
1600	500 x 500	180 x 300
2000	500 x 500	180 x 300
2500	500 x 500	180 x 300
3200	500 x 500	180 x 300
3600	500 x 500	180 x 300
4000	500 x 500	180 x 300
4500	500 x 500	180 x 300
5000	500 x 500	180 x 300
6300	500 x 500	180 x 300

REDUCER

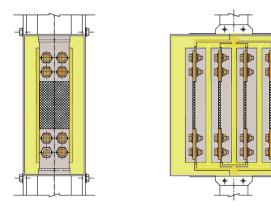

Ampere	Standard (mm)	Minimum (mm)
(A)	S x L	S x L
400	500 x 500	300 x 300
630	500 x 500	300 x 300
800	500 x 500	300 x 300
1000	500 x 500	300 x 300
1250	500 x 500	300 x 300
1600	500 x 500	300 x 300
2000	500 x 500	300 x 300
2500	700 x 700	450 x 450
3200	700 x 700	450 x 450
3600	700 x 700	450 x 450
4000	700 x 700	450 x 450
4500	700 x 700	450 x 450
5000	700 x 700	450 x 450
6300	700 x 700	450 x 450

EXPANSION JOINT

Ampere (A)	Standard (mm) S x L	Minimum (mm) S x L
400	500 x 500	300 x 300
630	500 x 500	300 x 300
800	500 x 500	300 x 300
1000	500 x 500	300 x 300
1250	500 x 500	300 x 300
1600	500 x 500	300 x 300
2000	500 x 500	300 x 300
2500	500 x 500	300 x 300
3200	500 x 500	300 x 300
3600	500 x 500	300 x 300
4000	500 x 500	300 x 300
4500	500 x 500	300 x 300
5000	500 x 500	300 x 300
6300	500 x 500	300 x 300

REDUCER WITH CIRCUIT BREAKER

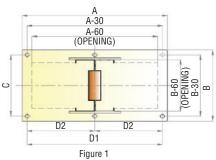
Ampere (A)	Minimum (mm) W x L x D
400	450 x 1180 x 250
630	450 x 1180 x 250
800	450 x 1180 x 250
1000	450 x 1340 x 270
1250	450 x 1340 x 295
1600	450 x 1365 x 345
2000	450 x 1425 x 380
2500	540 x 1425 x 520
3200	540 x 1500 x 570
3600	540 x 1500 x 570
4000	
4500	Dimension is subject to
5000	different circuit breaker
6300	

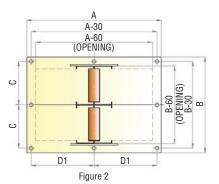

NECESSITY OF EXPANSION

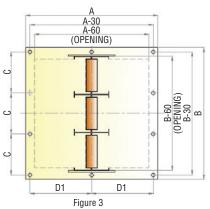
The busduct expands and contracts due to the heat by current loading and the ambient temperature. The elongation of the busduct is approximately 1.8×10^{-2} mm/m/°C. For example, when the ambient temperature is 30° C and the temperature rise of busduct is 40° C, we have the below result of elongation for the busduct is as follows.

▶ 1.8 x 10⁻² x (30 + 40) = 1.26mm/m

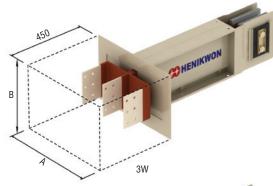
Moreover, there is a substance in respect to the busduct elongation by temperature rise, where the difference in the elongation between the conductor and the housing will result from a difference in their coefficients of expansion and temperature.

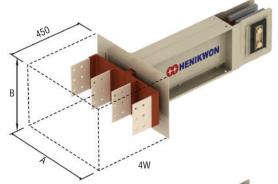

* This fitting is designed to absorb 25mm longitudinal expansion.

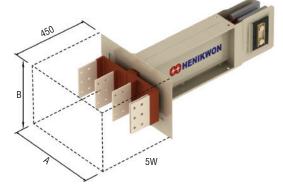



Note:

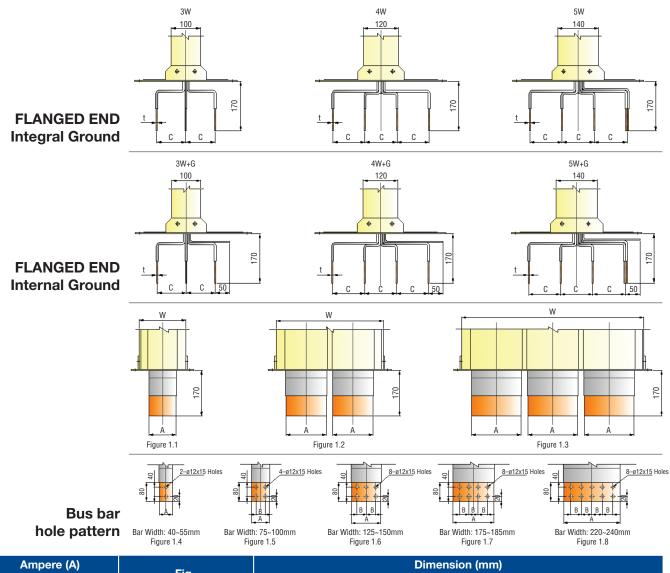
- 1. For horizontal run, it is recommended to install expansion joint in every 40metres.
- 2. For vertical run, please refer the page 26.


FLANGED END



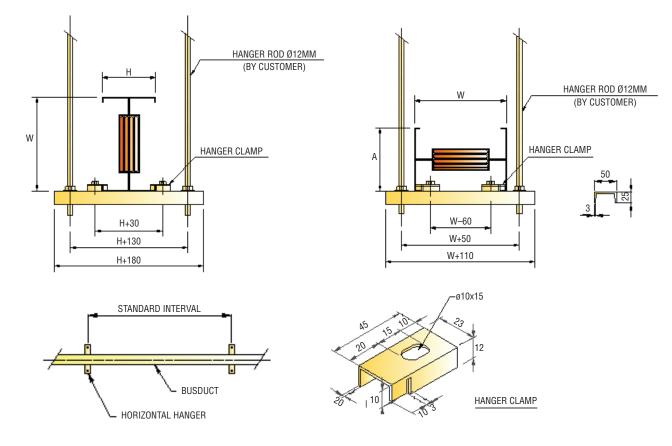


FLANGED END BOX

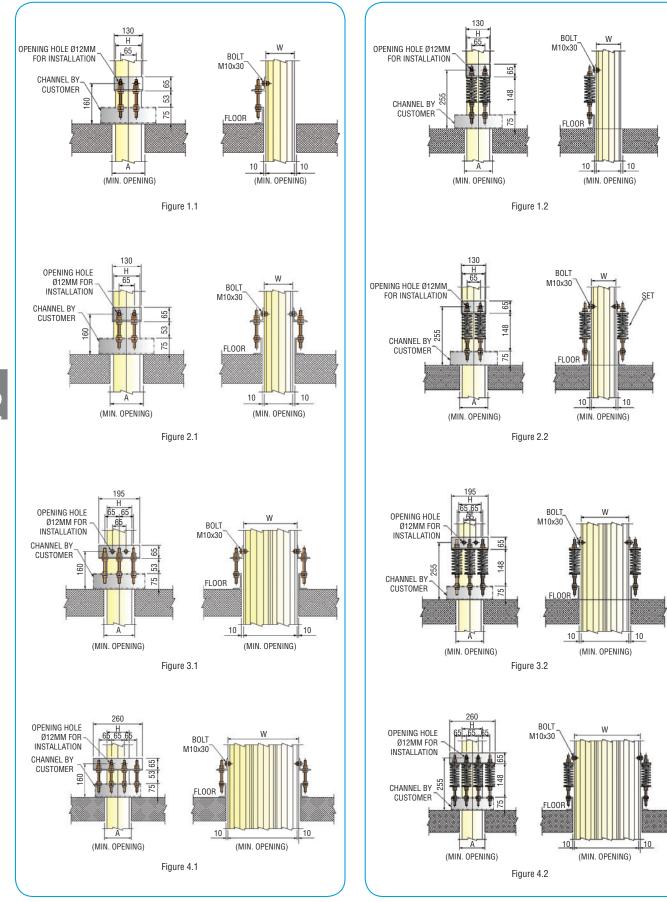


Ampere (A)		Fig.	3W (mm)					4W (mm)				5W (mm)					
Copper	Aluminum	Fig.	Α	В	С	D1	D2	Α	В	С	D1	D2	Α	В	С	D1	D2
400	_	1	350	175	145	320	_	450	175	145	_	210	540	175	145	_	255
630	-	1	350	175	145	320	-	450	175	145	-	210	540	175	145	-	255
800	-	1	350	185	155	320	-	450	185	155	_	210	540	185	155	-	255
-	400	1	350	190	160	320	_	450	190	160	_	210	540	190	160	-	255
-	600	1	350	190	160	320	-	450	190	160	-	210	540	190	160	-	255
1000	-	1	350	200	170	320	-	450	200	170	-	210	540	200	170	-	255
-	800	1	350	210	180	320	-	450	210	180	-	210	540	210	180	-	255
1250	-	1	350	225	195	320	-	450	225	195	-	210	540	225	195	-	255
-	1000	1	350	235	205	320	-	450	235	205	-	210	540	235	205	-	255
1600	1250	1	350	260	230	320	-	450	260	230	-	210	540	260	230	-	255
2000	-	1	350	295	280	320	-	450	295	280	-	210	540	295	280	-	255
-	1600	1	350	310	280	320	-	450	310	280	-	210	540	310	280	-	255
2500	-	1	350	335	305	320	-	450	335	305	-	210	540	335	305	-	255
-	2000	1	350	355	325	320	-	450	355	325	-	210	540	355	325	-	255
3200	-	2	410	460	215	190	-	540	460	215	255	-	540	460	215	255	-
3600	2500	2	410	510	240	190	-	540	510	240	255	-	540	510	240	255	-
4000	-	2	410	560	265	190	-	540	560	265	255	-	540	560	265	255	-
4500	3200	2	410	560	265	190	-	540	560	265	255	-	540	560	265	255	-
5000	-	2	410	650	310	190	-	540	650	310	255	-	540	650	310	255	-
-	4000	2	410	650	310	190	-	540	650	310	255	-	540	650	310	255	-
6300	-	3	410	810	260	190	-	540	810	260	255	-	540	810	390	255	-
-	4500	3	410	840	270	190	-	540	840	270	255	-	540	840	405	255	-
-	5000	3	410	1005	325	190	-	540	1005	325	255	-	540	1005	487.5	255	-

DETAIL OF END TERMINAL


Amp	ere (A)	Fig.	Dimension (mm)						
Copper	Aluminum	Fig.	Thickness	Α	В	C (3W)	C (4W/5W)	W	
400	_	1.1 and 1.4	4	40	_	100	110	115	
630	-	1.1 and 1.4	6	40	-	100	110	115	
800	-	1.1 and 1.4	6	50	-	100	110	125	
-	400	1.1 and 1.4	5	55	-	100	110	130	
-	630	1.1 and 1.4	6	55	-	100	110	130	
1000	-	1.1 and 1.4	6	65	-	100	110	140	
-	800	1.1 and 1.5	6	75	40	100	110	150	
1250	-	1.1 and 1.5	6	90	50	100	110	165	
-	1000	1.1 and 1.5	6	100	50	100	110	175	
1600	1250	1.1 and 1.6	6	125	40	100	110	200	
2000	-	1.1 and 1.6	6	150	40	100	110	235	
-	1600	1.1 and 1.7	6	175	40	100	110	250	
2500	-	1.1 and 1.7	6	200	50	100	110	275	
-	2000	1.1 and 1.8	6	220	45	110	110	295	
3200	-	1.2 and 1.6	6	125	40	130	130	400	
3600	2500	1.2 and 1.6	6	150	50	130	130	450	
4000	-	1.2 and 1.7	6	175	40	130	130	500	
4500	3200	1.2 and 1.7	6	175	40	130	130	500	
5000	-	1.2 and 1.8	6	220	45	130	130	590	
-	4000	1.2 and 1.8	6	220	45	130	130	590	
6300	-	1.3 and 1.7	6	175	40	130	130	750	
-	4500	1.3 and 1.7	6	185	45	130	130	780	
-	5000	1.3 and 1.8	6	240	45	130	130	945	

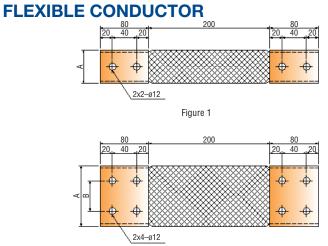
HORIZONTAL HANGER


Edgewise Installation

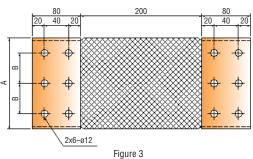
Flatwise Installation

Am	Ampere			Dimension (mm)			
(,	A)	Stack	w		н		
Copper	Aluminum		vv	3W	4W	5W	
400	_	1	115	100	120	140	
630	_	1	115	100	120	140	
800	-	1	125	100	120	140	
-	400	1	130	100	120	140	
-	630	1	130	100	120	140	
1000	-	1	140	100	120	140	
_	800	1	150	100	120	140	
1250	-	1	165	100	120	140	
-	1000	1	175	100	120	140	
1600	1250	1	200	100	120	140	
2000	-	1	235	100	120	140	
-	1600	1	250	100	120	140	
2500	-	1	275	100	120	140	
-	2000	1	295	100	120	140	
3200	-	2	400	100	120	140	
3600	2500	2	450	100	120	140	
4000	-	2	500	100	120	140	
4500	3200	2	500	100	120	140	
5000	_	2	590	100	120	140	
-	4000	2	590	100	120	140	
6300	-	3	750	100	120	140	
-	4500	3	780	100	120	140	
-	5000	3	945	100	120	140	

VERTICAL FIX HANGER

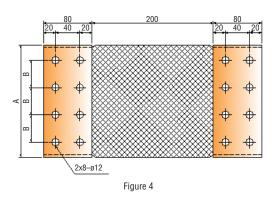

VERTICAL SPRING HANGER

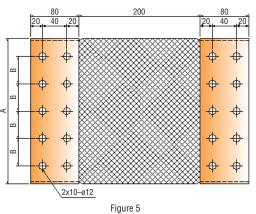
Note: Please order one set per floor or mounting.


An	Ampere		Dimension (mm)						
	(A)		w		н			Α	
Copper	Aluminum		vv	3W	4W	5W	3W	4W	5W
400	_		115	100	120	140	130	150	170
630			115	100	120	140	130	150	170
800			125	100	120	140	130	150	170
	400		130	100	120	140	130	150	170
	630	1.1	130	100	120	140	130	150	170
1000		1.2	140	100	120	140	130	150	170
	800		150	100	120	140	130	150	170
	1000		175	100	120	140	130	150	170
	1250		200	100	120	140	130	150	170
1250			175	100	120	140	130	150	170
1600			200	100	120	140	130	150	170
2000	-	2.1	235	100	120	140	130	150	170
	1600	2.2	250	100	120	140	130	150	170

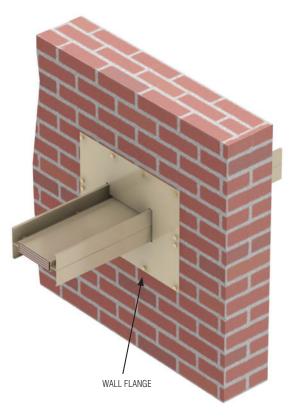
An	Ampere (A)		Dimension (mm)						
			w		н			Α	
Copper	Aluminum		vv	3W	4W	5W	3W	4W	5W
2500			275	100	120	140	130	150	170
	2000		295	100	120	140	130	150	170
3200			400	100	120	140	130	150	170
	2500		450	100	120	140	130	150	170
	3200	2.1	500	100	120	140	130	150	170
-	4000	2.2	590	100	120	140	130	150	170
	4500		780	100	120	140	130	150	170
-	5000		945	100	120	140	130	150	170
3600		3.1	450	100	120	140	130	150	170
4000	-	3.2	500	100	120	140	130	150	170
5000			750	100	120	140	130	150	170
6300		4.1	500	100	120	140	130	150	170
		4.2							

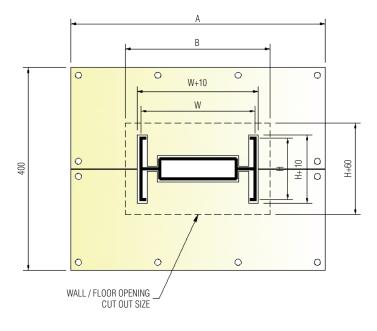
* Vertical spring hanger is installed to support busduct in each floor. When the height between the stories exceeds 4meters, a middle support is required.





Copper busduct						
Current rating (A)	Material	Fig.	A (mm)	B (mm)	Thickness (mm)	Length (mm)
400	4x40	1	40-1	_	8	360
630	6x40	1	40-1	-	8	360
800	6x50	1	50-1	-	8	360
1000	6x65	2	65-1	40	10	360
1250	6x100	2	100-1	50	10	360
1600	6x125	3	125-1	40	10	360
2000	6x150	3	150-1	40	10	360
2500	6x200	4	200-1	50	10	360
3200	2:6x125	3	125-2	40	10	360
3600	2:6x150	3	150-2	50	10	360
4000	2:6x175	4	175-2	40	10	360
5000	2:6x175	4	175-2	40	10	360
6300	3:6x185	4	185-3	40	10	360





Aluminium busduct

Current rating (A)	Material	Fig.	A (mm)	B (mm)	Thickness (mm)	Length (mm)
400	5x55	1	55-1	_	8	360
630	6x55	1	55-1	-	8	360
800	6x75	2	75-1	40	10	360
1000	6x100	2	100-1	50	10	360
1250	6x125	3	125-1	40	10	360
1600	6x175	4	175-1	40	10	360
2000	6x220	5	220-1	45	10	360
2500	2:6x150	3	150-2	50	10	360
3200	2:6x175	4	175-2	40	10	360
4000	2:6x220	5	220-2	45	10	360
4500	3:6x185	4	185-2	45	10	360
5000	3:6x240	5	240-3	45	10	360

WALL FLANGE / FLOOR FLANGE

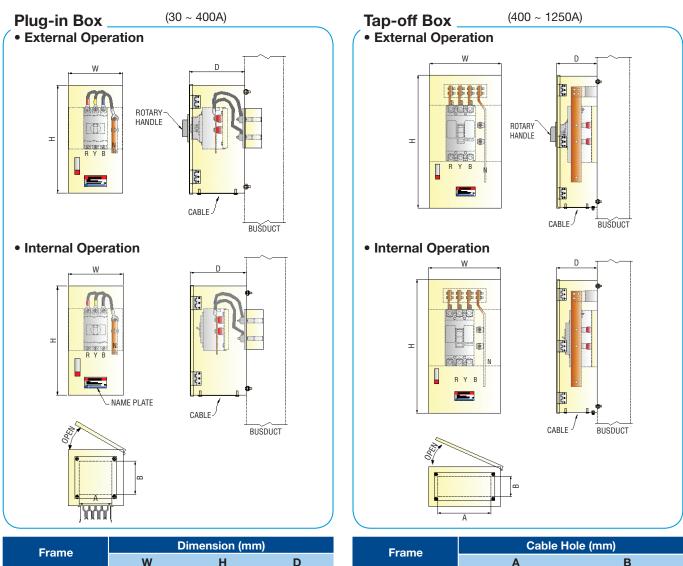
Amp	Ampere (A)		D	n)	
Copper	Aluminum	Stack	W	Α	В
400	_	1	115	380	175
630	-	1	115	400	175
800	-	1	125	400	185
-	400	1	130	400	190
-	630	1	130	400	190
1000	-	1	140	420	200
-	800	1	150	420	210
1250	-	1	175	450	235
-	1000	1	175	450	235
1600	1250	1	200	470	260
2000	-	1	225	520	285
-	1600	1	250	520	310
2500	-	1	275	550	335
-	2000	1	295	590	375
3200	-	2	400	720	460
3600	2500	2	450	720	510
4000	-	2	500	790	560
-	3200	2	500	770	560
-	4000	2	590	860	650
5000	-	3	750	1050	810
6300	4500	3	780	1050	840
-	5000	3	945	1230	1005

PLUG-IN / TAP-OFF BOX

A high degree of safety design

Henikwon SCM Busduct System's plug-in box is designed for a high degree of safety and is available in internal and external operation.

The plug-in / tap-off box comes with the following features:

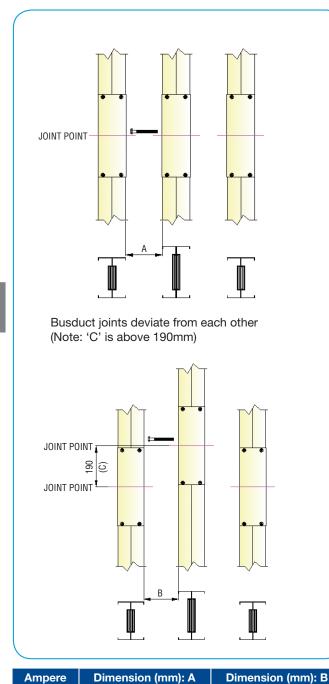

- A built-in interlock system that prevents opening of the cover when the device inside is in "ON" position.
- Plug-in hole is equipped with Class H insulation block which is fixed to the busbar to prevent any vibration which may cause any humming sound.
- Around the handle, there will be indication of colour codes and international "ON" and "OFF" switches.
- Plug-in boxes with solid copper links between the BBT and MCCB available on request.

Type of plug-in / tap-off box in a neutral position

The neutral terminal alignment is provided on the right side of the standard plug-in box.

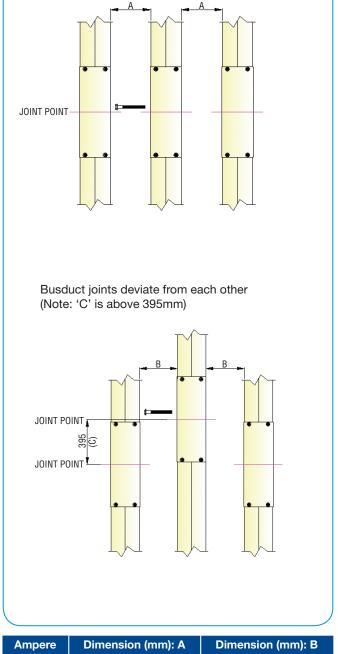
Grounding

Before the jaws make contact with the busbar, the plug-in box enclosure shall make positive ground connection to the busduct housing.

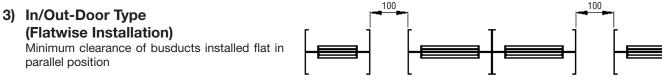

Frame	Dimension (mm)		Frame			
Traine	W	н	D	Traine	Α	В
30A ~ 100A	230	340	190	30A ~ 100A	120	60
125A ~ 225A	230	370	200	125A ~ 225A	160	80
250A ~ 400A	250	540	250	250A ~ 400A	180	120
500A ~ 800A	360	840	250	500A ~ 800A	270	120
1000A ~ 1250A	400	1000	300	1000A ~ 1250A	300	150

Note: 1) Plug-in / Tap-off Box can be equipped wth any brand of fused switches, MCCBs and etc, as per customer's requirement. All dimensions are subjects to change without prior notice.
Additional cable termination box can be provided on request.

DESIGN FACTORS FOR BUSDUCT LAYOUT


1. MINIMUM DISTANCE BETWEEN PARALLEL-INSTALLED BUSDUCT

1) In-Door Type (Edgewise Installation) Busduct joints side by side



Busduct joints side by side

2) Out-Door Type (Edgewise Installation)

Ampere	Dimens	ion (mm): A	Dimens	ion (mm): B
(A)	A) 3W 4W-5W		3W	4W-5W
400 - 6300	200	250	150	180

4W-5W

95

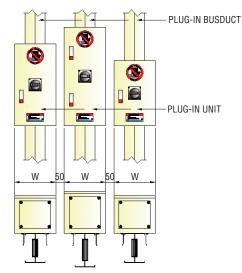
3W

85

(A)

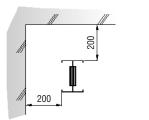
400 - 6300

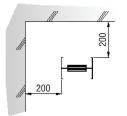
3W

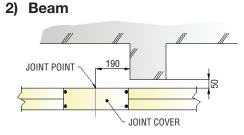

150

4W-5W

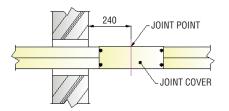
160

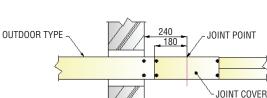

4) Plug-In Type

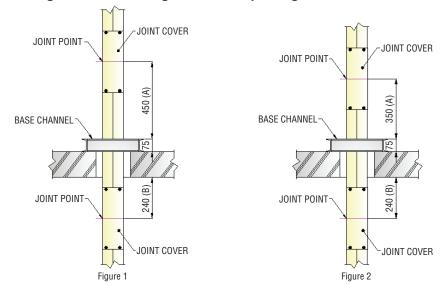

Minimum clearance of busducts installed flat in parallel position



2. MINIMUM CLEARANCE BETWEEN BUSDUCT, WALL, FLOOR AND OTHERS


1) Ceiling and Wall





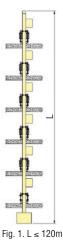
3) Busduct jointing point through wall installation Indoor installation Outdoor/Indoor installation

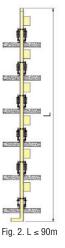
4) Busduct jointing point and the floor/ceiling surface through floor installation as per Figure 1 and ceiling surface as per Figure 2.

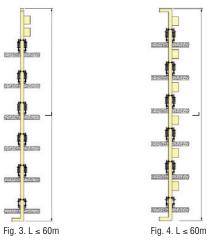
Joint should not be installed in between walls or floors.

Jointing point must be more than 240mm (B) from the surface of a ceiling.

If a vertical spring hanger is to be used on the floor, the distance must be more than 450mm (A). Otherwise, the distance must be more than 350mm, if vertical fix hanger is used.

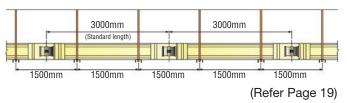

> Note: Base channel is not include in our scope of supply.


3. EXPANSION JOINT INSTALLATION

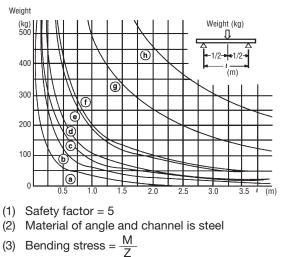

To determine the requirement of the expansion joint vertical busduct run, it will be according to how the busduct is supported at the two ends of the installation route; whether the busduct line is branched and what is the length of the busduct installation.

Supporting condition	Branching	Fig.	Length (L) which needs no expansion unit
Both ends free	Branched at each storey	1	120 (m)
One end free One end fixed	Branched at each storey	2	90 (m)
One end lixed	Not branched	3	60 (m)
Both ends fixed	Branched at each storey	4	60 (m)

See the figures below for the use of the vertical hanger and vertical spring hanger.



Note:


- 1. Expansion joint is used in the case of installation deviating from the above condition.
- 2. Expansion joint is designed and come in between the vertical hangers.

4. HANGER SUPPORT FOR HORIZONTAL **RUN**

Standard interval length between hangers = 1500mm

Size of hanger support

Z: Section Module

M: Bending Moment

•	Maximum bending moment & deflection (M)					
$M = \frac{W \mathrm{I}}{4}$	$\partial = \frac{W I^3}{48EI}$					
(haray E Vauna'a Mad						

Where: Young's Modulus E =

Second moment of area T = д

= Deflection

Specifications of various shape (steel)

	Steel mat	erial size	Z (cm³)	l (cm⁴)	Weight (kg/m)
а	Angle	40 x 40 x 3	1.21	3.53	1.83
b	Angle	50 x 50 x 4	2.49	9.06	3.06
С	Angle	50 x 50 x 6	3.55	12.60	4.43
d	Angle	75 x 75 x 6	8.47	46.10	6.85
е	Channel	75 x 40 x 5	5.54	12.40	6.92
f	Channel	100 x 50 x 5	7.82	26.90	9.36
g	Channel	75 x 40 x 5	20.20	75.90	6.92
h	Channel	100 x 50 x 5	37.80	189.00	9.36

Z: Section modulus

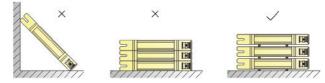
I: Second moment of area

Note:

1. Lifting Bolt size is 12mm.

- 2. Do not overlap lifting bolt and joint part.
- 3. Hanger interval standard length is 1.5m.
- 4. In case of the plural busduct installation, one hanger system can be selected.

INSTALLATION MANUAL


The following procedures are precautions that must be adhered in handling SCM Busduct System.

Installation according to the below instructions shall achieve a total performance of SCM Busduct System.

1. GENERAL PRECAUTIONS

1.1. Storage

- All unit numbers shall be checked against the packing list upon arrival of the goods/ consignment.
- ii) Also to check for any damages on busduct units that may occur during transportation.
- Store the busduct in a dry place to protect it from being soiled or damaged. If necessary, cover the busduct with water proof sheets.
- iv) Do not lay the busduct directly on the ground. Always place pieces of wood under the busduct and stack up firmly as shown below. Never put it upright during storage or installation.

 Cover the ends of the busduct unit with a vinyl sheet till immediate installation to prevent it from being soiled.

1.2 Preparation

- Check the busduct laying route thoroughly to see if there are any obstacles, i.e. heat source, water leakage, etc.
- ii) To standardized the installation of the busduct, the hanger pitch should be set to support two sections to one unit.
- iii) Site conditions are to be investigated before hand to determine the most appropriate laying order. The installation starts from connecting of busduct to transformer or switchboard. If the position of elbows T-branch cannot be determined precisely, then the selection on another position/point would have to be determined for.

1.3 Laying

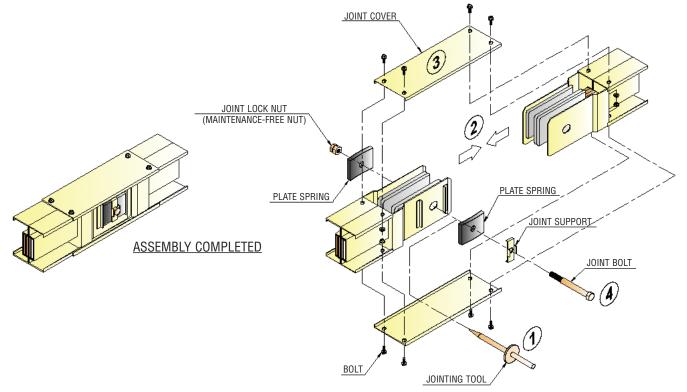
 Fork lift or similar is used for transportation and lifting. The weight per one meter of SCM Busduct System is given in the table on page 11. However, special busduct sometimes may weigh more than those shown in the table.

- To prevent the busduct from being damaged when hanging it with a rope, insert thick pieces of rag or corrugated cardboard between them. For copper busduct rated 2500A and above, a piece of strong wood is recommended to be used to withstand the weight.
- iii) Ensure that there are no damages to the conductor contact surface and insulating materials before jointing of the busduct. Also to ensure they are not soiled with debris and other foreign matter, if there is any, clean them thoroughly with dry cloth.
- iv) Make loose joint of busducts over the whole run. After measuring the dimensions, proceed with the normal jointing. SCM Busduct System allows dimensional adjustment of approximately \pm 3.5mm, at each joint.
- v) If a megger value is found to be abnormal after jointing the whole route, it means that much time is needed to detect faulty parts. It is therefore recommended that the megger checking to be partially conducted even during the joint work.
- vi) If the work is temporary halt during construction, then the ends of the connecting section should be protected against water and dust.
- vii) Do not use the installed busduct as a scaffold or material yard.

2. JOINTING PROCEDURE

General

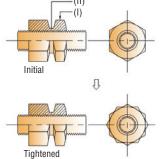
The following procedures are for the assembly of SCM Busduct System jointing section. Check the directions of the load and supply side of the busduct jointing part as shown in the diagram below.


HENIKWON SCM Busduct System is delivered to the site with the joint parts completely sealed with plastic to avoid any moisture ingress during transportation and storage. The joint part is tin-electroplated to prevent any corrosion and moisture from forming.

Able to insert from either direction.

3. JOINTING METHOD

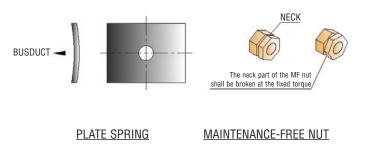
The most important section of the busduct system is the jointing part in order to avoid heating, voltage drop and etc. The following procedures are to ensure a continuous satisfactory operation and integrity of the busduct system.



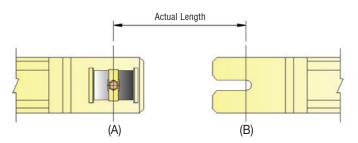
- 3.1 Ensure the jointing direction of load and supply sides are confronting each other before jointing. Place the inserting tool in order to make sure that both holes of the busbar conductor are aligned with each other.
- 3.2 Make sure the contact surfaces of the busbar conductor are smooth and clean to ensure a good electrical contact.
- 3.3 Insert the joint bolt completely with the joint support and plate spring. Once through the busduct jointing, the hole will be closed with plate spring and maintenance free nut.

MAINTENANCE FREE NUTS

HENIKWON SCM Busduct System provides a reliable and complete fastening of joint bolts, with a maintenance-free nut system. The maintenance-free nut system, as shown in the below diagram, consists of an inner Thread and Torque Limited Neck.


When a MF NUT is fastened by the torque wrench with the requirement torque of 150N•m and simultaneously. Later, the outer NUT head, which can be tightened with any long-handle wrench until the neck is twisted off and reaches the locked nut prerequisite.

- 3.4 Make sure that the bolts have a complete and proper fastening in order to get enough tightening. Revolve the outer nut clockwise until the neck part of the bolt breaks.
- 3.5 Fix the joint covers at the front and the back of the jointing part with bolt and nut. The joint covers have four housing mounting holes that contain twist-outs that would permit the expansion or contraction of the joint.
- 3.6 Temperature indicating stickers available at the joint on requests

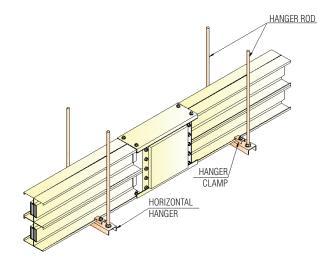

SAFETY POINT

- 1. Upon fastening and locking of joint bolts, Nut (I) will either be taken off or dropped. This indicates a proper safety of a fastened locked Nut.
- 2. Lock with twisted force will remain even though Neck (II) is broken in the process.

4. ACTUAL MEASUREMENT

If there is any remaining portion from the actual measurement, then the measurement shall be taken from point A to point B as shown in the diagram below.

5. CONNECTION WITH EQUIPMENT


Note followings when jointing the busduct with the transformer and switchboard.

Apply the under mentioned values as a yardstick for the clamping torque of the conductor clamping bolt.

Bolt Size	Clamping Torque (kg•cm)
M8	90 - 110
M10	180 - 230

6. HORIZONTAL HANGER INSTALLATION

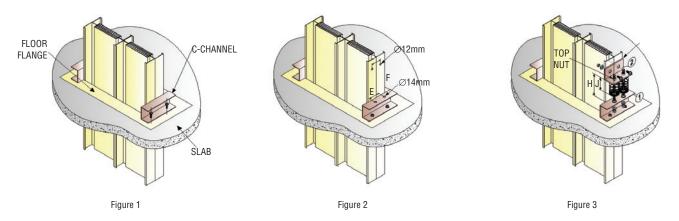
- 6.1 Fix horizontal hanger to the hanger rod and adjust it for correct elevation of the busduct as per site condition.
- 6.2 Lay the busduct on the horizontal hanger.
- 6.3 Install the hanger clamp on both side of the busduct for fixture.
- 6.4 Ensure the busduct is aligned in straight line.
- 6.5 Additional horizontal hangers shall be placed on elbows, such as vertical / horizontal elbow, offset elbow, combination elbow and etc.
- 6.6 Supporting interval of horizontal hanger shall not exceed 1.5 metres.

7. VERTICAL SPRING HANGER INSTALLATION

For Vertical Spring Hanger, they are used on subsequent floors to absorb any expansion occurrence from busduct. Moreover, immediate support shall be provided if the floor- to- floor distance exceeds 5 meters.

The following instructions are for fitting of Vertical Spring Hanger for Henikwon Busduct System.

- 7.1 Temporarily support the busduct section in place. Fit the C-Channel (customer supply) onto the Floor Flange. Fix on the bolts (customer supply) onto the Slab in order to hold the C-Channel firmly to the Slab.
- 7.2 Drill the C-Channel with opening hole of ø14mm to accommodate the fixed support rod. Locate the hole in line with the centerline of the side of the busduct housing. The distance in between these two holes from center to center is 65mm [E]. (Figure 1)


Then, drill the busduct housing with opening hole of ø12mm with the height around 190mm [F] from the top of the C-Channel for installing the L-Channel Bracket by using M10 bolts supplied. The distance in between these two holes from center to center is 60mm [G]. (Figure 1)

7.3 Fix the rod to the top of the C-Channel together with the nuts as shown in [1].

Try to adjust the Top Nut on both sides until the height from the bottom of the L-Channel to the top of the C-Channel is around 155mm as shown in [H] while the height from the bottom of L-Channel to the bracket of the Vertical Spring Hanger is 100mm as shown in [J].

Then, fix the L-Channel together with the nuts as shown in [2]. (Figure 2)

7.4 Remove the top nut after installation. The process of installing Vertical Spring Hanger is completed.

8. TEST AND CHECKING AFTER INSTALLATION

Check the whole route, mainly the points below at the same time with the measurement of insulation resistance of the whole structure being carried out once the laying of the busduct is completed.

When carrying out the measurement of the insulation resistance, disconnect the equipment after the plug-in box is installed. Once breaker has set to 'OFF' position (conduct the measurement).

The insulation resistance value cannot be specified due to the differences of the length of the route and the environmental factors. In a dried atmosphere, it would give a value of approximately $100M\Omega$ (1000V Megger). If it is below $10M\Omega$, it has to be checked due to some factors that can reduce the insulation and the other factors can be as follow;

- 1) Whether the busduct is damaged,
- 2) Whether the connecting parts are fixed precisely,
- 3) Whether the bolts for connecting the equipment are securely fastened,
- 4) Whether the hangers are supporting the busduct securely,
- 5) Whether the vertical spring hanger is fixed properly.

9. MAINTENANCE AND CHECKING

The following check points are recommended to ensure a long period of safe usage and maintenance of the busduct system:

- 9.1 Check the external appearance Check whether there are any deformation, damage, dirt and etc., throughout the whole run of the busduct and whether there is dislocation, bending and other abnormality of connecting cover, hanger and plug-in appliances.
- 9.2 Environmental check

The environment, where the busduct is used, may change after the installation. Check whether the environment has become hazardous even partially due to water, moisture, high temperature, corrosive gas, immoderate vibration, dust and etc.

9.3 Check the joint connection section

There will be no problem of loosening at the joint connection of SCM Busduct by 'concordance' as maintenance free nut system. Therefore, a periodical increased clamping is unnecessary. However, when the contact surface is soiled or deteriorated during the construction or during storage, a simple check by touching the external portion during the current sending is recommended as the above effects would gradually arise. If the temperature of the connecting section and the main body is about the same, then there will be no problem.

9.4 Check the load condition

Increase of load is expected at the early stage after the installation of the busduct. Check the total load is not exceeding the capacity of the busduct at the time of the increased in load. Closely minitor especially when the mainline is branched by T-branch or cross.

HIGHBAR is a non-segregated phase bus ducts designed for inter-connecting groups of metal-enclosed or metalclad switchgear, power transformers or other related equipment providing a wide range of ratings to allow proper application for a variety of installation conditions. Available in copper or aluminum conductors and all conductors are individually supported on epoxy insulators. The bus duct is designed, manufactured and tested in accordance with IEC62271-200:2003.

GENERAL SPECIFICATION

Features

- **Custom Engineered** The entire busduct system is specifically designed to suit the requirements of each installation.
- Simple jointing system It enables a quick installation.
- Low Installation Cost Field installation requires only placing the busduct sections on the supports, bolting splices, and connecting the ends to the apparatus terminals.
- High Basic Impulse Insulation Levels The basic impulse level of the busduct is equal to that of the associated switchgear or other equipment.

Sturdy Constructed Housing

The indoor busduct is a total enclosed and gasketed nonventilated housing. Outdoor busduct is totally enclosed and gasketed. Epoxy powder painted aluminum, electro-galvanized steel or stainless steel housings are available to meet the variety of environment concerns. Ventilated indoor busduct with louvers are available.

Busbar

The busduct conductor is available in either tin-plated or silver plated at contact surface of a copper bus bar with conductivity at 99.9% or aluminum busbar, per customer's specifications. Busbar is supported with flame retardant epoxy insulator to have a firm hold against the movement during short-time current. Internal or external ground bars or neutral bars are available as required.

Joints

Where splice plates are required, they are equal in cross section to the main busduct.

Space Heaters / Thermostat

As per customer's requirement, space heaters or thermostats are mounted inside the outdoor housings to prevent condensation, and detect the temperature changes, spaced approximately 2 meters along the length of outdoor busduct run.

Busduct Supports

Custom designed busduct support structures are available to meet the site condition, for both in indoor and outdoor installations to support the busduct runs.

Earth System

Internal earth system is fixed in the busduct.

Accessories

A complete line of elbows, tees, terminations for transformers and switchgear phase transpositions, expansion joints, wall flanges, flexible conductors, bushing boxes, bushing stud connectors and terminal enclosures are available.

Short-time Current Capacity

Conductors are firmly secured against movement during short time current to high rated levels.

Application Data

- 1) Operating voltage: 3.6kV 36kV
- 2) Withstand voltage: 10 195 kV
- 3) Rated current: 400 5000A
- 4) Conductors: Copper
- 5) Degree of Protection:
- Indoor / weather-proof IP54, Outdoor IP55 & IP65
- 6) Standard: IEC62271-200: 2003

PRODUCT SELECTION

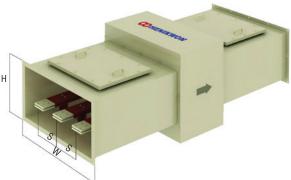
FEEDER

VERTICAL ELBOW

DIMENSIONS

1. 3.6KV CLASS 3 WAY

			Dimensi	on (mm)			Weigh	t (kg/m)
Ampere		Indoor			Outdoor			
(A)	S	W	н	S	W	н	Indoor	Outdoor
400	150	600	400	150	600	400	59	62
630	150	600	400	150	600	400	61	64
800	150	600	400	150	600	400	62	65
1000	165	650	400	165	650	400	68	71
1250	180	700	400	180	700	400	74	77
1600	180	700	400	180	700	400	91	95
2000	165	650	425	165	650	425	110	115
2500	180	700	425	180	700	425	115	120
3200	200	750	425	200	750	425	145	152
3600	230	850	425	230	850	425	168	176
4000	200	750	450	200	750	450	189	198
4500	230	850	450	230	850	450	220	230
5000	250	900	450	250	900	450	243	254


2. 7.2KV CLASS 3 WAY

			Dimensi	on (mm)			Weigh	t (kg/m)
Ampere		Indoor			Outdoor			
(Å)	S	W	Н	S	W	н	Indoor	Outdoor
400	160	650	400	160	650	400	62	65
630	160	650	400	160	650	400	64	67
800	175	700	400	175	700	400	68	71
1000	175	700	400	175	700	400	70	74
1250	190	750	400	190	750	400	77	80
1600	190	750	400	190	750	400	93	98
2000	175	700	425	175	700	425	112	118
2500	190	750	450	190	750	450	118	124
3200	225	850	425	225	850	425	151	158
3600	240	900	425	240	900	425	170	178
4000	225	850	450	225	850	450	194	203
4500	240	900	450	240	900	450	222	233
5000	275	1000	450	275	1000	450	248	260

HORIZONTAL ELBOW

Н

OW PHASE TRANSPOSITION UNIT

3. 12KV CLASS 3 WAY

			Dimensi	on (mm)			Weigh	t (kg/m)
Ampere		Indoor			Outdoor			
(A)	S	W	н	S	W	н	Indoor	Outdoor
400	200	800	500	200	800	500	75	78
630	200	800	500	200	800	500	76	80
800	225	900	500	225	900	500	83	87
1000	230	900	500	230	900	500	86	90
1250	250	950	500	250	950	500	92	96
1600	250	950	500	250	950	500	109	114
2000	230	900	550	230	900	550	129	135
2500	250	950	550	250	950	550	134	140
3200	275	1050	550	275	1050	550	167	175
3600	300	1100	550	300	1100	550	187	196
4000	275	1050	550	275	1050	550	209	219
4500	300	1100	550	300	1100	550	237	249
5000	315	1150	550	315	1150	550	260	273

4. 24KV CLASS 3 WAY

			Dimensi	on (mm)			Weight	t (kg/m)
Ampere		Indoor			Outdoor			
(A)	S	W	н	S	W	Н	Indoor	Outdoor
400	275	1150	650	275	1150	650	100	105
630	275	1150	650	275	1150	650	102	106
800	300	1200	650	300	1200	650	106	111
1000	300	1200	650	300	1200	650	108	114
1250	315	1250	650	315	1250	650	115	120
1600	325	1300	650	325	1300	650	134	141
2000	300	1250	700	300	1250	700	154	161
2500	325	1300	650	325	1300	650	157	164
3200	350	1350	700	350	1350	700	190	199
3600	375	1450	700	375	1450	700	212	222
4000	350	1350	700	350	1350	700	232	243
4500	375	1450	700	375	1450	700	263	275
5000	390	1500	700	390	1500	700	286	300

Henikwon AIRDUCT system is totally metal enclosed air-insulated busduct system which complies to the characteristics and structure specified in BS5486/2, IEC60439-2, JIS C8364, NEMA, ANSI and CSA.

Small capacity of power supply systems are being used widely for various factories, machine shops, school laboratories and commercial buildings, where modern and simple wiring system is required for more economical power supply connecting to the equipments, machines, lighting facilities and many others.

Most of indoor location where there is a need for small blocks of conveniently available power, HENIKWON AIRDUCT System serves as a highly rationalized power supply system with various features.

With total ten plug-in holes per 3000mm unit are available for various capacity ranges of the AIRDUCT System, which really demonstrates its superb functions.

GENERAL SPECIFICATION

Features

- High Safety
- Custom Engineered
- Compact & Light-weighted
- Easy Installation
- Low Installation Cost
- Economical
- Quick Delivery
- Easy Expansion & Relocation
- Can Be Branched out Anywhere

Sturdy Constructed Housing

The indoor busduct is a total enclosed and gasketed nonventilated housing structured in epoxy powder painted electrogalvanized steel.

Busbar

The bus duct conductor is available in tin-plated 99.9% copper conductivity busbar. Busbar is supported with glass fiber reinforced SMC insulator which stands above 180°C, holding firm against the movement during short-time current. Internal or external ground bars or neutral bars are available as required.

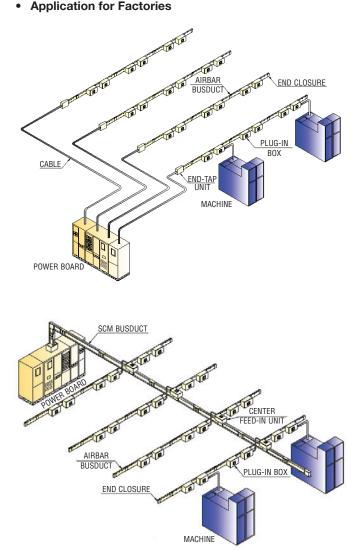
Joints

Direct joint system results a better connection.

Earth System

Internal ground system is available.

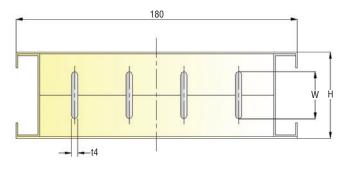
Short-Time Current Capacity


Conductors are firmly secured against movement during short time current.

Accessories

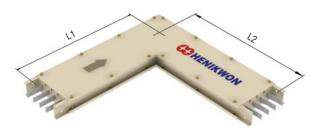
A complete line of elbows, tees, terminations for transformers and switchgear, floor flanges, flexible conductors, enclosures are available.

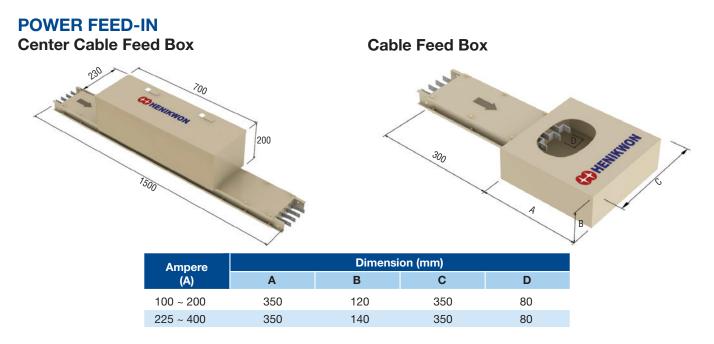
Application Data

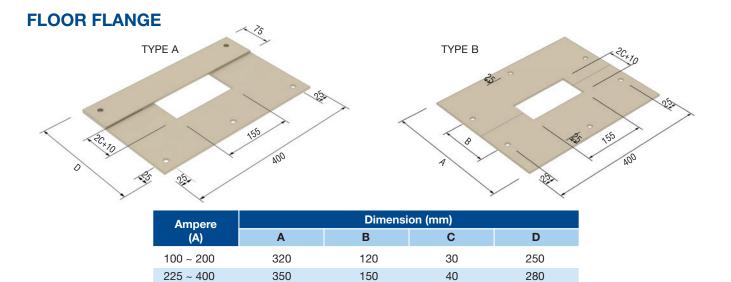

- 1) Operating voltage: 415V
- 2) Withstand voltage: 10 kV
- 3) Rated current: 100 400A
- 4) Conductors: Copper
- 5) Standard: IEC60439-2: 2005
- Annie stien fen Festenie

PRODUCT SELECTION

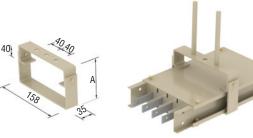
FEEDER (PLUG-IN)

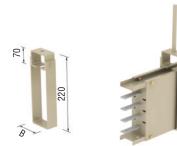



Ampere	Conduc	tor (mm)	Dim (mm)	Impedance	Volt. Drop	Weight
(Å)	т	W	н	R: 50Hz	X: 50Hz	(kg/m)
100 ~ 200	4	20	55	2.18 x 10-4	1.07 x 10-4	7.5
225 ~ 400	4	40	75	1.28 x 10-4	0.80 x 10-4	10.8



HORIZONTAL ELBOW

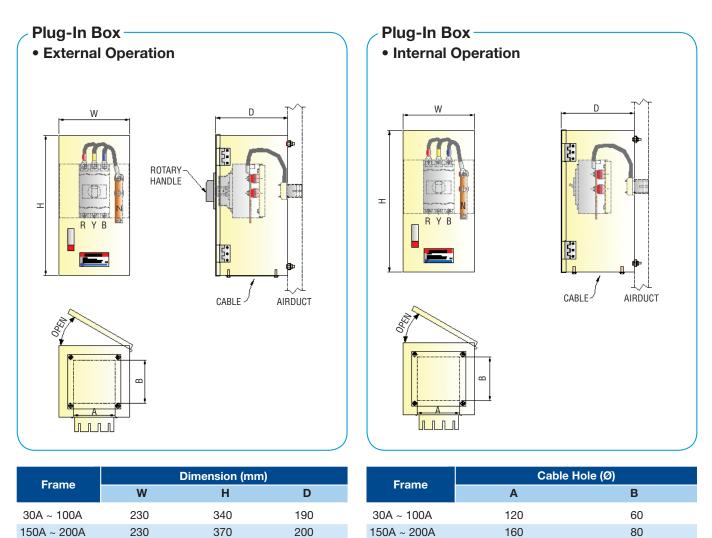

Standard(mm)	Min. (mm)	Standard(mm)	Min. (mm)	2
L1 x L2	L1 x L2	L1 x L2	L1 x L2	
300 x 300	100 x 100	300 x 300	150 x 150	


HANGERS

Hanger for Flatwise Installation


Hanger for Edgewise Installation

Vertical Spring Hanger



Ampere (A)	Dimension : A (mm)	Ampere (A)	Dimension : B (mm)
100 ~ 200	110	100 ~ 200	60
225 ~ 400	130	225 ~ 400	80

Vertical Fix Hanger

.

Note: 1) Plug-in / Tap-off Box can be equipped wth any brand of fused switches, MCCBs and etc, as per customer's requirement. 2) All dimensions are subjects to change without prior notice.

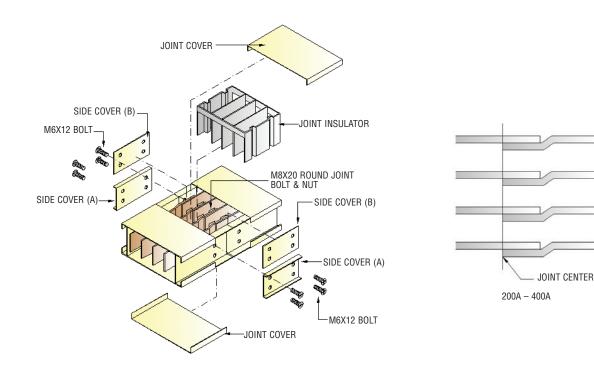
SAFETY LOCK MECHANISM

1. Ground-Cases Safety

The Air Duct case is safely grounded with earth springs and they are the first to come in contact with the casing when the plug-in box is attached to the air duct.

2. Safe, "Neutral First" Plug Connecting

When a plug-in box is attached to the busduct, the neutral line is the first to connect forming a solid neutral circuit. Likewise, the neutral plug is the last to break circuit when disconnecting the plug-in box from the air duct to provide total neutral line priority over all of the energized lines.


3. Box Interlock

When the door is open, the plug-in box can be affixed firmly to the air duct. If it is closed, it will not be possible to remove the plug-in box from the air duct.

4. Door Interlock

When the plug-in box door is closed and the handle is in "ON" position, the door will automatically be locked and the MCCB will be activated. If the door interlock is released by turning the lock handle to "OFF" position, the MCCB will be energized and the door is ready to open.

INSTALLATION MANUAL

JOINTING METHOD

- (1) Align two units of Air Duct to be jointed.
- (2) Overlap conductor edges exactly as shown above.
- (3) Fix casings with nut plates and side covers on both sides.
- (4) Connect conductors of each phase with bolts and nuts. Fit in blue coloured face of Belleville washers turned inside.
- (5) Insert an insulation barrier inside joint.
- (6) Fix the ground bar for jointing part to the ground bar attached with the side of Air Duct.

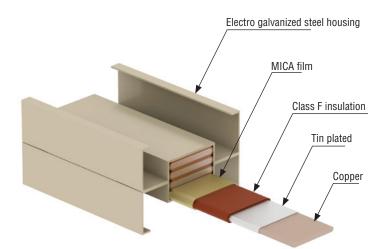
HANDLING

Proper handling, installation, inspection and maintenance will preserve Air Duct excellent properties and ensure trouble-free operation for a long time.

1. Transportation and Storage

- 1.1 Store Air Duct indoor at a dry place.
- 1.2 When transporting the Air Duct, do not drop or let it hit other objects.
- 1.3 When storing Air Duct, check the number of all units.
- 1.4 Keep Air Duct up off the floor using wooden spacers.1.5 During storage, make sure that the Air Duct is protected
- from moisture and damage.

2. Installation


- 2.1 Check the layout design of the Air Duct before setting to work.
- 2.2 Do not drop or let the Air Duct hit other objects when carrying it out from the storage.
- 2.3 Use hangers (horizontal run) to support each unit of Air Duct at the two points.

- 2.4 For vertical installation, Air Duct will be supported by the floor.
- 2.5 Make sure that Air Duct jointing is done correctly and firmly.

3. Inspection and maintenance

- 3.1 If it has been correctly and thoroughly inspected after installation, Air Duct will provide basic maintenance-free service.
- 3.2 It is best to inspect the Air Duct periodically and provide maintenance as and when required to ensure its original top-level performance for a longer period of time where it is being used as an important trunk line.
- 3.3 Check the Air Duct thoroughly whenever it has been subjected to unusual conditions such as having been jolted by earthquake, exposed to fire or contaminated by water or other foreign matter.

FIRE-RESISTANT BUSDUCT SYSTEM

Henikwon busduct system also offers the fire-resistant busduct system complying with IEC60331 and BS6387, withstanding, 750° C for 3 hours.

Henikwon Fire-resistant Busduct System is highly reliable and safe against the fire emergencies in the maintenance of the building.

Henikwon SCM busduct are tested for resistance to flame propagation and fire resistance in building penetration as per IEC61439-6 up to 240 minutes.

Fire Resistance to building penetration test performed on Henikwon SCM Busduct are BRE, UK

Henikwon Fire-Resistant Busduct System in test chamber burner

Henikwon Busduct System under ASTA Type Test

HENIKWON

IEC STANDARD INTERNATIONAL PROTECTION (IP)

IEC Publication 60529 Classification of Degrees of Protection by Enclosures provides a system for specifying enclosures of an electrical equipment based on the degree of protection required.

Protection against to	Prote	ction	Protection against water	
Touch	Foreign body	first figure	second figure	
o protection	no protection	0	0	no protection
idental touch th large areas of the body ack of hand)	Ø>50mm large foreign bodies, diameter greater than 50mm	1	1	♦ ♦ vertically-falling ♦ drops of water ♦ (for example, ♦ condensation) ●
ith the finger	Ø>12mm foreign bodies, diameter greater than 12mm	2	2	drops of water falling at up to 15° from the vertical
ith tools and wires, meter greater than 2.5mm	Ø>2.5mm small foreign bodies, diameter greater than 2.5mm	3	3	spray water falling at up to 60° from the vertical
ith tools and wires, meter greater than 1mm	Ø>1mm → → round foreign bodies, diameter greater than Imm	4	4	projected water from all directions (limited ingress permitted)
limited ` protection	dust deposits (limited ingress; no harmful deposits)	5	5	jets of water (limited ingress permitted) EC
complete ' protection .	entry of dust	6	6	heavy streaming water
e IP classification is sh mple: IP 21 e first figure indicates: tection against touch with ies with a diameter greate	the finger and solid		7	short-term immersion
e second figure indicat equipment in protected ag ically falling drops of water	gainst	1	8	immersion

HENIKWON NOTES

HENIKWON

NOTES

No. 887, Jalan Subang 9, Taman Perindustrian Subang 47500 Subang Jaya, Selangor, Malaysia.

Tel : +603-8023 1827

Fax : +603-8023 1905

Email : info@henikwon.com Web-site : www.henikwon.com

HENIKWON is committed to the policy of continuous development and improvement and thus, reserves the right to supply products which may differ in detail from those shown in this publication without any prior notice.